7.4: Derivatives, Integrals, and Products of Transforms

Example 1. Find $X(s)$ in differential equation

$$
x^{\prime \prime}+x=\cos t .
$$

Definition 1. (The Convolution of Two Functions)
The convolution $f * g$ of the piecewise continuous functions f and g is defined for $t \geq 0$ as follows:

$$
(f * g)(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau
$$

Example 2. Find the convolution of $\cos t$ and $\sin t$.

Theorem 1. (The Convolution Property)
Suppose that $f(t)$ and $g(t)$ are piecewise continuous for $t \geq 0$ and that $|f(t)|$ and $|g(t)|$ are bounded by $M e^{c t}$ as $t \rightarrow \infty$. Then the Laplace transform of the convolution $f(t) * g(t)$ exists for $s>c$; moreover,

$$
\mathcal{L}\{f(t) * g(t)\}=\mathcal{L}\{f(t)\} \mathcal{L}\{g(t)\}
$$

and

$$
\mathcal{L}^{-1}\{F(s) \cdot G(s)\}=f(t) * g(t) .
$$

Example 3. Find $\mathcal{L}^{-1}\left\{\frac{2}{(s-1)\left(s^{2}+4\right)}\right\}$.

Theorem 2. (Differentiation of Transforms)
If $f(t)$ is piecewise continuous for $t \geq 0$ and $|f(t)| \leq M e^{c t}$ as $t \rightarrow \infty$, then

$$
\mathcal{L}\{-t f(t)\}=F^{\prime}(s)
$$

for $s>c$. Equivalently,

$$
f(t)=\mathcal{L}^{-1}\{F(s)\}=-\frac{1}{t} \mathcal{L}^{-1}\left\{F^{\prime}(s)\right\} .
$$

Repeated applications gives, for $n=1,2,3, \ldots$

$$
\mathcal{L}\left\{t^{n} f(t)\right\}=(-1)^{n} F^{(n)}(s) .
$$

Example 4. Find $\mathcal{L}\left\{t^{2} \sin k t\right\}$.

Example 5. Find $\mathcal{L}^{-1}\left\{\tan ^{-1}(1 / s)\right\}$.

Example 6. Find the solution to the initial value problem

$$
t x^{\prime \prime}+x^{\prime}+t x=0 ; \quad x(0)=1, \quad x^{\prime}(0)=0
$$

Theorem 3. (Integration of Transforms)
Suppose that $f(t)$ is piecewise continuous for $t \geq 0$, that $\lim _{t \rightarrow 0^{+}} \frac{f(t)}{t}$ exists and is finite, and that $|f(t)| \leq M e^{c t}$ as $r \rightarrow \infty$. Then

$$
\mathcal{L}\left\{\frac{f(t)}{t}\right\}=\int_{s}^{\infty} F(\sigma) d \sigma
$$

for $s>c$. Equivalently,

$$
f(t)=\mathcal{L}^{-1}\{F(s)\}=t \mathcal{L}^{-1}\left\{\int_{s}^{\infty} F(\sigma) d \sigma\right\} .
$$

Example 7. Find $\mathcal{L}\left\{\frac{\sinh t}{t}\right\}$.

Example 8. Find $\mathcal{L}^{-1}\left\{\frac{2 s}{\left(s^{2}-1\right)^{2}}\right\}$

Homework. 1-33 (odd)

